When you write code that interacts with a foundation model, you need to reference the foundation model by its model ID.
You can reference a foundation model by its model ID when you do the following things:
- Inference a foundation model that is deployed by IBM. See Foundation model IDs for inferencing from the API.
- Deploy a deploy on demand foundation model. See Foundation model IDs for deploying from the API.
Foundation model IDs for inferencing from the API
Use the List the available foundation models REST method to get the {model_id}
for a foundation model, and then
specify the model ID as a string in your code.
For information about how to get model IDs by using the Python library, see Getting information about available foundation models programmatically.
Model IDs for inferencing
The following list shows the values to use in the {model_id}
parameter when you inference a foundation model that is deployed by IBM from the API.
For the model IDs for deploy on demand foundation models, see Foundation model IDs for deploying from the API. To inference a deploy on demand foundation model by using the API, you must specify the deployment ID for the model, not the model ID.
-
all-minilm-l6-v2
sentence-transformers/all-minilm-l6-v2
-
all-minilm-l12-v2
sentence-transformers/all-minilm-l12-v2
-
allam-1-13b-instruct
sdaia/allam-1-13b-instruct
-
codellama-34b-instruct-hf
codellama/codellama-34b-instruct-hf
-
elyza-japanese-llama-2-7b-instruct
elyza/elyza-japanese-llama-2-7b-instruct
-
flan-t5-xxl-11b
google/flan-t5-xxl
-
flan-ul2-20b
google/flan-ul2
-
granite-8b-japanese
ibm/granite-8b-japanese
-
granite-13b-chat-v2
ibm/granite-13b-chat-v2
-
granite-13b-instruct-v2
ibm/granite-13b-instruct-v2
-
granite-20b-multilingual
ibm/granite-20b-multilingual
-
granite-3-2b-instruct
ibm/granite-3-2b-instruct
-
granite-3-8b-instruct
ibm/granite-3-8b-instruct
-
granite-guardian-3-2b
ibm/granite-guardian-3-2b
-
granite-guardian-3-8b
ibm/granite-guardian-3-8b
-
granite-3b-code-instruct
ibm/granite-3b-code-instruct
-
granite-8b-code-instruct
ibm/granite-8b-code-instruct
-
granite-20b-code-instruct
ibm/granite-20b-code-instruct
-
granite-34b-code-instruct
ibm/granite-34b-code-instruct
-
jais-13b-chat
core42/jais-13b-chat
-
llama-3-3-70b-instruct
meta-llama/llama-3-3-70b-instruct
-
llama-3-2-1b-instruct
meta-llama/llama-3-2-1b-instruct
-
llama-3-2-3b-instruct
meta-llama/llama-3-2-3b-instruct
-
llama-3-2-11b-vision-instruct
meta-llama/llama-3-2-11b-vision-instruct
-
llama-3-2-90b-vision-instruct
meta-llama/llama-3-2-90b-vision-instruct
-
llama-guard-3-11b-instruct
meta-llama/llama-guard-3-11b-vision
-
llama-3-1-8b-instruct
meta-llama/llama-3-1-8b-instruct
-
llama-3-1-70b-instruct
meta-llama/llama-3-1-70b-instruct
-
llama-3-405b-instruct
meta-llama/llama-3-405b-instruct
-
llama-3-8b-instruct
meta-llama/llama-3-8b-instruct
-
llama-3-70b-instruct
meta-llama/llama-3-70b-instruct
-
llama-2-13b-chat
meta-llama/llama-2-13b-chat
-
llama-2-70b-chat
meta-llama/llama-2-70b-chat
-
llama2-13b-dpo-v7
mnci/llama2-13b-dpo-v7
-
mistral-large
mistralai/mistral-large
-
mixtral-8x7b-instruct-v01
mistralai/mixtral-8x7b-instruct-v01
-
ms-marco-minilm-l-12-v2
cross-encoder/ms-marco-minilm-l-12-v2
-
mt0-xxl-13b
bigscience/mt0-xxl
-
multilingual-e5-large
intfloat/multilingual-e5-large
-
pixtral-12b
mistralai/pixtral-12b
-
slate-30m-english-rtrvr
ibm/slate-30m-english-rtrvr
-
slate-30m-english-rtrvr-v2
ibm/slate-30m-english-rtrvr-v2
-
slate-125m-english-rtrvr
ibm/slate-30m-english-rtrvr
-
slate-125m-english-rtrvr-v2
ibm/slate-30m-english-rtrvr-v2
Foundation model IDs for deploying from the API
To programmatically get a list of foundation models that can be deployed on demand, specify the filters=curated
parameter when you submit a List the available foundation models method REST API request.
For example:
curl -X GET \
'https://{region}.ml.cloud.ibm.com/ml/v1/foundation_model_specs?version=2024-12-10&filters=curated'
From the watsonx.ai REST API, you can use the Create a deployment method to deploy the foundation model, and then use the Deployments > Infer text method to inference your deployed foundation model.
For more information, see Deploying and managing foundation models deployed on-demand with REST API.
Model IDs for deploying
The following list shows the values to use in the {model_id}
parameter when you deploy a deploy on demand foundation model from the API.
-
granite-3-8b-base
ibm/granite-3-8b-base-curated
-
granite-13b-chat-v2
ibm/granite-13b-chat-v2-curated
-
granite-13b-instruct-v2
ibm/granite-13b-instruct-v2-curated
-
granite-20b-code-base-schema-linking
ibm/granite-20b-code-base-schema-linking-curated
-
granite-20b-code-base-sql-gen
ibm/granite-20b-code-base-sql-gen-curated
-
flan-t5-xl-3b
google/flan-t5-xl-curated
-
flan-t5-xxl-11b
google/flan-t5-xxl-curated
-
flan-ul2-20b
google/flan-ul2-curated
-
llama-2-13b-chat
meta-llama/llama-2-13b-chat-curated
-
llama-2-70b-chat
meta-llama/llama-2-70b-chat-curated
-
llama-3-8b-instruct
meta-llama/llama-3-8b-instruct-curated
-
llama-3-70b-instruct
meta-llama/llama-3-70b-instruct-curated
-
llama-3-1-8b
meta-llama/llama-3-1-8b-curated
-
llama-3-1-8b-instruct
meta-llama/llama-3-1-8b-instruct-curated
-
llama-3-3-70b-instruct
meta-llama/llama-3-3-70b-instruct-curated
-
llama-3-3-70b-instruct-hf
meta-llama/llama-3-3-70b-instruct-hf-curated
-
mixtral-8x7b-base
mistralai/mixtral-8x7b-base-curated
-
mixtral-8x7b-instruct-v01
mistralai/mixtral-8x7b-instruct-v01-curated
-
mistral-nemo-instruct-2407
mistralai/mistral-nemo-instruct-2407-curated
-
mt0-xxl-13b
bigscience/mt0-xxl-curated
Parent topic: Coding generative AI solutions